Home > Discovery, Environment, Nature, Power, Research, Science, Technology > Seaweed Helps Batteries Hold 8 Times Its Normal Power

Seaweed Helps Batteries Hold 8 Times Its Normal Power

September 13, 2011 Leave a comment Go to comments

These silicon particles were coated with a binder derived from giant kelp. The binder’s ability to allow the particles to swell without cracking could allow silicon to be used in lithium-ion battery anodes. Credit: Science

“Lithium-ion batteries could hold up to 10 times as much energy per cell if silicon anodes were used instead of graphite ones. But manufacturers don’t use silicon because such anodes degrade quickly as the battery is charged and discharged.

Researchers at the Georgia Institute of Technology and Clemson University think they might have found the ingredient that will make silicon anodes work—a common binding agent and food additive derived from algae and used in many household products. They say this material could not only make lithium-ion batteries more efficient, but also cleaner and cheaper to manufacture.

Lithium-ion batteries store energy by accumulating ions at the anode; during use, these ions migrate, via an electrolyte, to the cathode. The anodes are typically made by mixing an electroactive graphite powder with a polymer binder—typically polyvinylidene fluoride (PVDF)—dissolved in a solvent called NMP. The resulting slurry is spread on the metal foil used to collect electrical current, and dried.

If silicon particles are used as the basis of the electroactive powder, the battery’s anode can hold more ions. But silicon particles swell as the battery is charged, increasing in volume up to four times their original size. This swelling causes cracks in the PVDF binder, damaging the anode. In research by Science, the Georgia Tech and Clemson scientists show that when alginate is used instead of PVDF, the anode can swell and the binder won’t crack. This allows researchers to create a stable silicon anode that has, so far, been demonstrated to have eight times the capacity of the best graphite-based anodes.”

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: